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Abstract

Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis.
Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for
accurate, reliable and individlized identification of brain ROISn this paperwe present a novel approach

visual analyticsand its opersource software for ROI definition and brain network construction. By combining
neuroscience knowledge and computational intelligence capediNisual analyticscan generate accurate,
reliable and individualized ROIs for brain networks jamt modeling of multimodaheuroimagingdata andan

intuitive and reatime visual analytics interface. Furthermore, it can be used as a functionapfR@ikation and
prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation
span working memory fMRI/DTI dataset, a schizophrenia DTl/resting state fMIRVER) dataset, and a mild
cognitive impairment DVR-fMRI dataset,in orderto demonstrate the effectiveness of visual analytics. Our

experimental results are encouraging.

Keywords: multimodal neuroimaging joint modelng, visual analytics visualization andinteraction, brain

networks



1. Introduction

The human brain is an interlinked network in which segregation and integration are the general principles guiding
its functional architecturé-riston 2009 Ashburner et al 2004. 1 t is widely believed th
integrated via structural and functiorc@nnectivity (Biswal et al., 2010; Hagmann et al., 200@nstruction and
assessment of brain networks based on in vivo brain imaging data may not only fagibtatieative analysis of

brain connectivity(Sepulcre et al., 2010; Fransson et al., 2010; Zylberberg et al.,, 20403lso enrich our
understanding of how brain functions are integréketstonet al., 2003Bullmoreand Sporns, 200$Hagmann et

al., 2010; Van Dirjk et al., 2000 Therefore, analysis of brain networks is of significant importanderdam

imaging andneuroscienceBiswal et al., 2010; Hagmann et al., 2010eanwhile, brain network construction

and analysis have significarapplications in brain disease researels structural and/or functionabrain
connectivityalterations are widely reported in a varietybadin disease$Meyer-Lindenberg et al., 200Danielle

et al, 2008 Minzenberg et al., 2009; Lynall et al., 201Br instance, schizophrenia has often been conceived as

a disorder of connectivity between components of lagde brain network@anielle et al. 2008 Lynall et al.,

2010) The strength of functional connections in the brainpatients withschizophenia has been shown to be
significantly decreased, whexe their diversity isncreasedl(ynall et al., 2010) Topologically, these functional
networks have also been shown to exhibit reduced clustering;worddiness, and a reduced probability of Righ
degree hubgDanielle et al. 2008 Lynall et al.,2010) Accordingly, dysfunction of the working memory system,
which is highly dependent on a number of executive functions, has often been repopesadns with

schizophrenigMeyerLindenberg et al.,@1; Minzenberg et al., 2009)

A fundamental question arises when attempting to construct specific brain nethmskt better define the
locations and sizes of ROIg®n ROI is abrain region thatis functionally specialized as one unfe.g., an
activated brain region i typical taskbased fMRI studylt is often considered as a node in brain network

analysis. Essentially, ROIs provide the structural substrates for measuringstthetural and functional



connectivities within individal brains and fointegratingdata across populations. Thus, identification of reliable,
reproducible and accurate ROIs is critically important for the success of brain connectivity mapping.
Unfortunately, this task is quite formidabthie to the followingreasons(Liu, 2011) First, the boundaries
between cortical regions are unclear since it is difficult to obtain in vivo cytoarchitectural and chemoarchitectural
delineation of ROIs on the cerebral cortex. Second, cortical anatomy, connection and farecsamificantly
variable across individual3hird, the properties of ROIs are hightypnlinear (Liu, 2011)For instance, a slight
changeo the location of an ROl may dramatically change its structural and functional connectivity gtofées

al., 2010a).

Current approaches for identifying ROIs in brain imaging can be broadly classified into three categories. The first
is manual labeling by experts based on their domain knowladdesxperienceThough this method iwidely

used,it maybevulnerable to intesubject and intrgubjectvariation (Amunts et al., 200@nd its reproducibility

might be low. The second method is to cluster ROIs from the brain image itself and-gridate(Zang et al.,

2004; Beckmann et al., 2005However, many datadriven approachesould besensitive to the clustering
parameters sed The third method uses tablased fMRI paradigms to identify activated brain regions as ROIs.
This methodology is regarded as the benchmark approach for ROl identificatiwavet, tastbased fMRI itself

has limitations, and is subject to a variety of variables that might affect the detected~®QOhstance, a few
studies(White et al., 2001; Geissler et al., 2005; Jo et al., 2008; Ou et al., &pided that the lodans of
detected fMRI activations could be significantly shifted due to spatial smoothing, which is commonly used in
popular fMRI analysis toolkitssuch as SPM, FSL and AFNFurthermore, groupased activation maps may
show different patterns from an initlual's activation magLi et al., 2010a)In short standard analysis of task

based fMRI dataemains quite challenging erccurately locatiing ROls for each individual

ROI identification using joint analysis of multimodal information, efiper tractography, fMRI BOLD signals,

cortical folding pattern and anatomy, h&sentlyemerged(Ho et al., 2009Cherubini et al., 2010.i et al.,



2010a; Chen et al., 2011; Zhang et al., 20%hang et al., 2011Zhu et al., 2011)The neural basis of ése

studies is that brain structure and function are highly related to each other. For example, it has been reported that
functionalbrain regionhas a unique set of inputs and outputtiied a ficonnectional fingerprigt(Passingham et

al., 2002) Recentdevelopment of joint analysis of multimodal brain imaging data showdthiaterivedfiber

shape is a good descriptor of brain functibnet al., 2010aZhang et al., 201t Zhu et al., 2011)Also, cortical

folding pattern seems to be closely relatedhe architectonic, connectional and functional specialization of the
cortexas well(Toro and Burnod, 20Q%-ischl et al., 2008Chen et al., 2001 As such, it is of great importance to

leverage all available multimodal information to idenfifyctional ROIs.

Here, we present anovel visual analyticsapproachthat allows neuroscientists tmtegrate multimodal
neuroimaging data, including structural volumes, cortical surfacesdBritedfiber tracts and fMRI signals, for
visual construction rad assessment of functional ROIBhis approachcontainstwo major parts: the joint
modeling of multimodalneuroimagingdata and an intuitive and re#ine interaction interfaceThe joint
modelingintegrates multimodal data into a unifiegpresentatiorior ROIs and the interfaceallows experts to
interactively verify computationalgerived ROIls, edit these ROIls, and visually assess ROI attributes (such as
axonal fibers and fMRI signals) based on their neuroscience knowledgd experimental experience
Furthermorethe proposed approadan be used as an ROI optimization and prediction solution when fMRI data
is unavailable or inadequate. As examples, we demonstrated the capabilityapptbach and itaccompanied
software to predict missing ROIs fro group ativation maps for individualspredict ROIlsof patients of
schizophrenia (SzZusing DTl fiber tracts and predict default mode network (DMIR)YIs for mild cognitive
impairment MCI) patients The crossplatform and open sourceoftware interfacewas developed based on

QT/VTK, andhas beemeleasednlineat http://www.cs.uga.edu/~tliu/visualAnalyticTkt/visualAnalyticTkt.htm

It should be noted that both visualizatimnd analysis of multimodal brain imaging data and network construction

have been active researateas(Viergever et al.,, 2001; Manssour et al., 2001; Azar et al., 2005; Baum et al.,


http://www.cs.uga.edu/~tliu/visualAnalyticTkt/visualAnalyticTkt.htm

2008;Venkataraman et al., 2010; Anderson et al., 2011; Sui et al.).Z0id unique contributioof this paper is
that we emphasize the visual analytics of multimodal brain imaging data for networlstreiction and analysis
by combining neuroscience knowledge and computational intelligence capabditiéd)ae demonstrated the
significantly improved accuracida terms of ROI localizatiorby our approach anis accompaniedsoftware

interface

2. Materials and Methods

2.1 Data acquisition and preprocessing

Dataset 1 Twenty five UGA healthy university studentiages: 24.8° 2.8, 6 males and 19 femalesyere
recruited to participate in this study under UGA IRB approialltimodal data inclughg T1, fMRI and DTI
were acquired on a GE 3T Signa HBsanner using an-éhannel head coil at the UGBIioimaging Research
Center BIRC). Acquisition parameters were as follovsl was acquired with fast spoiled gradient recalled
echo (FSPGR) protocol. Acquisition parameters @na&rix =512 x512,TE = minfull, TR = 7.5ms, flip angle =
20°, 154 axial sliceslice thickness 1.2 mmand FOV = 256 x 256 mm.aBkbased fMRIwas acquired using a
T2*-weighted single shot echo planar imaging (EPI) sequence. Acquisition parametesgxaére:matrix,30
slices,4 mm slice thickness, 220m FOV, TR=1.5s, TE= 25ms, ASSET= 2; DTl was alscacquired using a
T2*-weighted single shot echo planar imaging (EPI) sequeXerguisition parameters aré28x128 matrix60
slices,2mm slice thickness, 256m FOV, TR= 15100 ms, TE= min-full, ASSET= 2, 3 BO images, 3@iffusion

weighted images (DW|)b-value= 1000.

The preprocessing of these multimodal MRI data is as folloka. the fMRI data, the operation span (OSPAN)
working memory taskRaraco et al., 20)lwas performediuring data acquisition. FMRI prprocessing steps
include brain extraction usinBrain Extraction Tool (BEY (Smith, 2002) motion correctiorusing the Motion

Correction FMRIB Linear Registration Tool (MCFLIRTJenkinson and Smith, 200X)jce timing correction,



prewhitening, Gaussian smoothing (FWHM=6.75mm). For the T1 structural dafa;ogessing includes brain
extraction using BETmith, 2002) and tissue segmentation usk8L FAST (Zhang et al., 2001 TI data pre
processingincludes brain skull removalia FSL BET (Smith, 2002, motion correction, and eddy current
correction. Then tissue segmentation (Liu et al., 2007) aret fibctography Killard and Gerig 2003 are
conducted on prprocessed DTI data. The grey mattetM)Gand white matter (WM) cortical surface was
reconstructed based on the WM miapm DTI tissue segmentatiofLiu et al., 2007;Liu et al., 2008) using
marching cubegLorensen and Cline, 1987Streamline fiber tractographwas performedria MEDINRIA to

meet the real time requirementwgual analyticghttp://www-sop.inria.fr/asclepios/software/MedINRIA/)

Dataset 2: This dataset contains0 schizophrenia (SZ) patients and 10 controls ftoeNA-MIC dataset
(http://hdl.handle.net/1926/1687). For eaiftthe participants multimodal T1 structural MRI, DTI and MRl
data were acquiredrhe Tlimages werescanned usingontiguous spoiled gradienecalled acquisition (fast
SPGR)protocol, and the acquisitigmarameterare TR = 7.4 ms, TE= 3 ms, flip angle=10, FOV = 256 x 256
mm, matrix=256x256. DTI scans were acquired using an echo planar imaging (EPI) sequdribe acquisition
parameters are: TR £000ms, TE= 78 ms, FOV= 240 x 240 mmmatrix = 144 x144,85 slices were scanned
with slice thikness= 1.7 mm, ASSET =2, 8 b0 images, and 51 DWI images with b=9B&MRI was acquired
with high resolution EPI sequence with scan parameters: 3B00ms, TE= 30 ms, slicethickness= 3 mm, 200
volumes,and matrix= 96x96. The scan lasted for biinutes The preprocessing for T1 and DTI is the same
with Dataset 1For R-fMRI, the preprocessing includes brain extraction usigL BET (Smith, 2002) motion
correction using FSL FLIRT (Jenkinson and Smith, 20013lice timing correction, prewhitergn Gaussian

smoothing, and banrpass filtering (0.01Hz~0.1Hzjsing inrhouse tools

Dataset 3:28 participants (10 Mild Cognitive Impairment (MCI) patients and 18 sderoographically matched
controls) were recruited and scanned in the BUKE Brain Imaging and Analysis Center (BIA@QnderIRB

approval MCI patients were diagnosed ky clinical pgchiatrist at Duke Medical Center with criteria



accordance with NACC procedures and NINGRBSRDA diagnostic guidelinesDemographic information for

the participants is as followsumbers of males in MCI and controls: 5 and 8; age: 74.2 + 8.6 (MCIljaddt

8.2 (controls); MMSE: 28.4 + 1.5 (MCI) and 29.4 + 0.9 (controls); years of education: 17.7 + 4.2 (MCI) and 16.3
+ 2.4 (controls)Multimodal MRI data including DTl and RMRI wasacquired using a 3.0 Tesla scanner (GE
Signa EXCITE, GE Healthcarelhe RfMRI acquisition parameters are: FRRO00Oms, TE= 32 ms, matrix= 64

x 64,34 slicesslice thicknesss 4 mm, 150 volumes, FOV 256 x 256 mm DTl scan parameters aréR =
17000ms, TE = 78ms, flip angle = 90 matrix= 256 x 256, FOV 256 x 256 mm72 slicesgslice thickness: 2

mm, 1 b0 image, and 25 DWI images witlrl1000. The prgorocessing for DTl and MRl is the same as in

Dataset 1 and 2.

2.2 Approach and oftware interface overview

In general, this visual analytiegproach and itsoftware aims to provide: 1) an informative way to define brain
network nodes (functional ROIsja joint modeling ofmultimodal information for the nodes; 2) an intuitive
visualization of brain networks including functional networks; B8attime and usefriendly interaction between

the networks and userand4) a framework for experts to compare the multimodal information of ROI attributes

and derived networks from different subjects.

modality
Data




Fig.1. Thediagram of the software architecture, interaction and visualization floWser interaction flowp :

visualization flow; 3 : ROI definition and network construction.

As depictedin Fig.1, the softwargraphic user interface (GUI$ based on QThttp://gt.nokia.com) and VTK
(http://www.vtk.org), both of which are mature solutionstire scientificcommunitywith crossplatform ability.
Specifically, the GUIs of the software armbmeinteractions requiring high accuracy are implemented using QT,
while visualization of multimodal dattor ROIs and brain network, as well as the rest of the interactions, are
implemented using VTKTogethey they provide the foundation to visualize multimodal dafeROlsandbrain

networks, and to obtain retine interaction with the networks.

The interaction and visualization flowas follows (se€ig.1). When the user makesrequest for a visualization
update(e.g, whether or not to display fiber tract overlay on the cortical surfaaa,to update the multimodal
information after ROI movement or e RI IB@QLD gsignadl eorilder, or
tracts) QT/VTK will capture the command and initiate the corresponding processing filters on multimodal data or
a brain network. After processing, these filters will provide feedback to QT/VTK, which will update the

visualization of corresponding scenes in 4t@ale.

As to the GUI of the softwayaghere are four scenes displayed in four separatavsudows (see Fig@). Each
scene has one type or modaltitfydata cortical surface datdiber tracts, fMRI BOLD signals, or anatomical data
(seeSection 2.1 for data description and pygrocessing) Functional ROIs represented by spheres may be added
to all scenes except the one representirefMRI BOLD signal. Additionally, the four scenes are in the same
coordinate space, which enables the joint visualizatibnmaltimodal data for better functional region
interpretation, e.gfiber tracts can be overlaid onto the scene representing cortical foldingseat&ig.2(3) ),

andthecortical surface can also be overlaid ontofiber tracts scene.


http://qt.nokia.com/
http://www.vtk.org/

2.3 Joint representation of multimodal brain imaging data

Recently, brain network exploration via joint modeling of multimodal data has gained increasing interest since
multimodalneuroimaging datenay providecomplementarynformation about brain networks, e.®TI data can

reveal the structural connectivity between two functional regiongilvéa tracking technologies, while resting
state fMRI data can reveal the low frequency oscillations among these ré@goksnann et al., 200%0x et al.,

2006; Fox andRaichle 2007; Greicius et al., 2007;i et al., 2010b) In contrast, traditionallynetwork nodes

ROIs have been widely definemblely on anatomical MRI datayhich may introduce bias and uncertainBor
example,as shownin Li et al., 2010aa slight movement (one voxel) in anatomical location ROl can
dramatically alter the structural connectivity pattern of the R@Ilsuch,ROI definition leveraging multimodal

brain imaging data can provideiperiorlocalizationability comparedwith that d a single modality datasetin

this software, we provide multimodal information in the construction of a brain network and in the process of
network interactios (Fig. 2). This information includes folding patterfrom the cortical surface, structal
connectivity patters by fiber tracts, functional BOLDs signal by fMRI data, and anatomical information by

structural MRI datand atlas labelThey are displayed in four ssindows as shown in Fig. 2.

To facilitate brain network exploration from multimodal data, we used a joint data representation strategy whose
advantage is that structural and functional connectivities can be modeled accurately at the individual level, within
an indi vi du phobléggal siruciurg af eortioabfolding. The foundation of this strategy is to map the
fMRI BOLD signals onto the cortical surface under the guidance offibét tracts ad cortical foldingpatterrs

(Li et al., 2010b) In general, for vertices on thertioal surface that havigbers passing nearby, they represent

the signals of gray matter where thdibers end; for those that do not have, they represent the signals of gray
matter inthe normal directionof the surface at current verteior details othis technique, please refer to Li et

al., 2010b It should be noted that multimodality data should be in the same coordinate space to ensure ROI

correspondence amongst the data. To achieve this goal, we adopted DTI space as the standard space



reconstruted the white matter cortical surface dirxersdirectly from DTI dataand registered the fMRI data to
DTI spaceusingFSL FLIRT (Jenkinson and Smith, 200}his helped to reduce the misalignment between DTI

data and fMRI data compared to that betwegraid DTI/fMRI datgLi et al., 2010b)

To take the advantages of rich morphological and anatomical information of T1 structural smdgbsain
atlaseswealso integratd 1 imagesand OxfordHarvard cortical atlagito the joint data representation strategy.
Wh a t 0 sinstamtswitchesbetween T1 images and DTI imagegavailable in the toolkitin this way,we can
obtain both detailed morphological and anatomical information with T1 images and atlases as tivell
improvedalignment accuracy with DTl image§he intra-subject multimodal images were affinely aligney
FSL FLIRT (Jenkinson and Smith, 2001), while the wsigbject MRI images were registered via ANTS (Avants
et al., 2008 parameters we usedre ANTS 3 -m CC[template.nii.gz,subject.nii.gz,1,4] 100x100x30-0

output.nii.gz-t SyN[0.25]-r Gauss[3,0).

2.4 Reaktime visualization of multimodal information for ROI definition and network interaction

Real time visualization of multimodal informatida.g., anatomy, folding patterstructural connectivityfMRI

BOLD signals and atlas labél is of great importance in ROI definition and network interaction. The reason is
that ROIs may not be defined once and for all, since one may not know the dptiatimn and size of the ROlI,

and needs severateps or tries. Therefore, raaéhe display of changes in the correspondiibgrs and fMRI

BOLD signals associated with an ROI will greatly help to determine whether its current position or size needs
modification. For example, when attempting to optimize the location of left and right dorsolateral prefrontal
cortex ROIls in the working memory network, the ROIs should be placed where they show the strongest structural

connections to the parietal lobes.
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Fig.2. Visualization of multimodal information Fig.2 (1) is for ROI definition andFig. 2 (2) is for network
interaction Fig.2.2. 1a and 2a depict the cortical folding pattern via white matter cortical surface; 1b and 2b
depict thefibers emanating fromcurrent ROI (highlighted by yellow arrows)c and 2c depict thprincipal
componenbf currentROI6 s f MR BOL Ds s 2.7 and Ldsand(28 degittiesamatormicaldatation

of the ROI in volume. A functional network was visualized Im &nd spheres with unique colors represent ROIs



of the brain networkfig.2 (3) depicts snapshots @int visualization of cortical surface and fiber tradkem the

top-right sub window of the GUI.

In this toolkit, we implemented reéime visualizatbn of multimodal information in botbf the ROI definition

and network interaction processes. As shown in Fig. 2(1), while an ROI is being defined, its multimodal
information, including ROI size, folding patterfiber tracts, fMRI BOLD signal, anatomyand atlas label
information is immediately visualizednd dynamically updateds shown in Fig. 2(2), the same occurs when an
ROl is chosen from an existing network. Furthermore, the displayed connectivity pattern of the whole network is
also updated imnakately. On our desktopomputer(Xeon 2.0G, 16G RAM, NVIDIA Quardro FX4600 graphic
card), the visualization is almost instant. In fact, the software can run smootimosirturrent mainstream

desktops.

2.5 Visual analytics for ROI identification

I nteractive ROI editing is the core of ROI definit
location or size may introduce dramatic changes to its structural connectivity profile, as revdithed thycts,

and thefMRI BOLD signal (Li et al., 2010a)These changes may then significantly impact the behavior of the
entire network. As such, interactive ROI location and size editing is of great benefit in ROI definition, as well as

in network exploration.

In this approach andoftware, wedesigned two ways to edit ROIsThe first oneuses mouse draanddrop
manipulations to move the ROI from one location to another; this is easy and intuitive. With thimeeal
visualization of multimodal information, users may approach the desiredoRa&ilon efficiently. Limits of this
method include the low localization accuracy and the inability to aB@dtsize. Therefore, a second network
controllerwas designed to fill this gap. As depicted in Fig. 3, the network controller lists all the RBls w

detailed information for each. Displayed are the ROl name, checkboxes indicating whether to show the ROI, the



RO fibers and the ROI &6s BOLD signal, spin boxes indic:é
and t he ROI 06 gsicaddoardinates.aAncdraté andcongplete ROI interaction can be performed via the
controll er. For instance, i f users i nput fiersmelw phy

correspondin@®@OLD signalschange accordingly in the visuali if applicable.

r 5]

X & Metwork Controller 2 & X
Linsula & ROl Fiber BOLD: 000 $:000 $:000 $:500 $:25537 20666 22756 E[
¥ ROl Fiber BOLD: 000 $:000 $:000 $:500 $:32722 24232 30106
LOciPole: s ROI Fiber BOLD: 000 £:000 £:000 £:500 £:15487 12094 1236 |5
< ] 1¢»

Fig.3. User interaction with ROIs via network controller. For each ROI, displayed are the ROI name, checkboxes
indicating whether to show the ROI, fiber, and its BOLD signal, ROI translations in X, Y and Z directions,

ROl size, and its physical coordinates.

A significant advantage of the softwaige once the configuration of the network is changed., a ROI is
enlarged, a corresponding visualizatioupdate request is submittetmultaneously Thus,the visualizationof
multimodal information for this ROI and related network propertiéé be updatel in real time. Another
convenience facilitatinglynamicalROI identification is the milti-subjectstudy support built inside the toolkit.
Users can smoothly switch among different subjects. Moreover, after setting up a teonpdateference
attributes of the RObeing editedwill be automatically compared witthat of the templateFor examplethe
structural connectivity pattern revealedftber tractsderivedfrom DTI datawill be quantitatively compared with
thatof thetemplateand simultaneously visualizedihich helps users to finith a current subjecan ROI that has
similar fiber connectionswith the referencéseesection2.6 on quantitative representation of fiber tract#}

video demastrationcan be found ahttp://www.youtube.com/watch?v=Wmj7R4GVI3M


http://www.youtube.com/watch?v=Wmj7R4GVl3M

2.6 Quantitative representation of fiber bundles

Although many algorithms have been proposed to cluster fibers into bundles (Brun et al., 2004, Maddah et al.,
2005, OO0 Do n n, &aryfallidsstet ab, POIQ) how2t@qidhtitatively represent and cargfiber bundles

is still an open question. Recently, we proposd@dazeMap model (Zhu et al., 2011) to deal with this question,

and all the comparisons of fiber tracts in this paebased on this model. Briefly, for each fiber in a fiber
bundle, ve divided it into small segments. For each segment, we used the privegbal from a Principal
Component Analysis to represent The princi@l vector corresponds to a poirtn the standard sphemith

radius as one, dubbed as TraceRdmspherical coordinate system. Thus, a fiber bundle can be represeratéd by

the TracePointen the standard sphere.

To compare two fiber bundles, we first take samples on the standard spheréobmly sampling/, ¢in the

parametespacdO, 2p ], and obtain a series of samples:

X={xrf, @lr 4, fE,Dgj=i D0,1=.N j 0,1=M (1)

where D andp are the sampling steps in parameter spade@fid g N andM arethe corresponding sampling

numbers at each parameter space.

2
N:_p

2" ®)
M:_’D

P

Then we can represent a fiber bundle as a matrix:

F={D,1i=0,1,..N;j =0,1,..M )
n. )



wheren, is the number of TracePoints withthe neighborhood of sampling point(1,7,, ¢)on the standard

sphere T is the total number of TracePoints for the fiber bu“ndIBij then is the density of TracePoints at

sampling pointx(1,7;, ¢). Distance of two fiber bundles, f, canthenbe defined as

D(f,, f,)=|F, -F,] (4)

where F, andF ,are matrix representationsfiber bundles f, andf,, and|1| is theL2-norm ofthe matrix. For

more information of TraceMap, please refer to Zhu et al., 2011.
2.7 ROI types and network types

ROI definition is a fundamental yet challenging issue, especially when ROI size and shape are taken into
consideration(Liu, 2011) Therefore, a flexible ROI representation scheme is necessary. In this toolkit, three
types of ROIs have currently been supported, i.e., spheres and boxes with adjustable size, and image volumes
While the first two ROI types arthe mainstream in the brain imaging community, the last one enables the

representation of ROIs with arbitrary ssz:nd shape.

Each ROl mayhavedozens ofMRI BOLD time series, many of whictould have similar fluctuationslo find

the representativiBOLD signal for @ ROI, we applieda PCA dimension reduction technique to these time series,
and usd the firsteigen vector (corresponds to the largggen value) ashe representativ8OLD signalfor the
current ROI Mathematically, supposk is a m3 t matrix (m time series, each of which hagime points), and

assumeX has zero meanve want to find a m3 m orthogonal matrixP sothat



’ (5)

where/, is the eigenvalue, and, 2 /, 2 / 2 O Q; Pcan be rewriten asP =[p, p,,..., p,], and p,is

aneigenvectoof the covariancenatrix of X corresponding to the eigenvalle p, is therepresentativ8OLD

signal forthe current ROI. In this wayregardless the type of ROI, the BOLD signal it represents itioolkit
will always be the principal componenitthe BOLD signals within that ROHowever, t should be noted that if
the ROI is too large (e.g., the whole precentral gyrus), the representation of BOLD signal using principal

component would not barefered Such ROls are currently deprecated in our method.

Fig.4. The two types of brain networks implemented in this software. (a): Functional connectivity network.
Network nodes ROIs are represented by spheres. Connectivity is dbfirtbé Pearsoncorrelationbetween

fMRI BOLD signals and connectivity strength is represented by the width and the opacity of the edges (thin and
transparent edge means weak connection). White edges mean positive correlations, and green ones stand fc
negative correlatins. (b): Effective connectivity network. Connectivity is defined usheGranger causality

(Granger, 1969)Arrows represent causality direct®nThe width and the opacity of the edges stand for


http://en.wikipedia.org/wiki/Eigenvector

connectivity strength.

Both functional connectivity aneffective connectivity have been widely usadorain networlkanalysis(Friston
et al., 2003; Friston 2009; Harrison et al., 2003; Roebroeck et al., RiO&5al., 2009) This toolkit supports both

types of analysis. For the functional connectivigtwork, the classical Pearson correlation coefficient is adopted

as the similarity measureme®pecifically, suppose, v, are two ROIs whose principal component BOLD signals

are b, b, respectively, the functionabanection strength between, v, is definedas:

_A,0- B, ) A (h B B
e~ - T Py T b
(T-15S, S \/a kzl(bik - b.)2 aki(bjk 'bj)z

(6)

whereT is the number of fMRI volumes.

For the effective connectivity network, this toolkit has adoptieel Granger causalityGranger, 1969ps the
connectivity measuremeririefly, suppose twdime seriesx andY , each of which can bexpressed as an auto

regression of their lagged values:

P
XI = a- a\X\-i +elt

i=1

p W)

Y =8aby, +e

itei 2t
i=1

where P is the lag orderX  is the BOLD signal value ofX at timet, so isy,, ande, e, areprediction errors

and their variances describe the accuracy optieeiction.If each time series has causal effect onto the other,

then X andY can be reexpressed:



P P
XI = a aixt-\ + abIYII +e31

i=1 i=1
P P (8)
Yt = a Ci Xt-i * adl Yt-i + e4

t
i=1 i=1

wherea , b, ¢, d are modetoefficients ande, and e, are the prediction error$o testthe causal effect of to

X , we construct & statistics:

_(S(g)-S(g N/F
S(e )/ (T -2P)

F

©)
where S(1) is the surnmof-square for a residual variablelnder null hypothesisHo :B: o,E): (b,,b, ;- ,b, ),

F,. . has aF distribution with degree of freedoP,T - 2P):F,_ ~F(P,T- 2P). HereT is the length of

the time series, an# is the lag order in Eq7) and(8). The largerF,  is, the more unlikely its sampled under

X

H,, which meanshe causal effect of to X is significant.The strength of the causality can be measbyethe

causality magnitude:

M, , =In(S(e3)y S(ed) (10)

Y

With Eqg.(9) andEqg. (10), we can represent the directioncalusalityeffect and the strength of the causality.

In addition, smooth switching between the two types of networks is available while exploring the networks. This
feature provides crosalidation of certain functional ROIs when users have prior information tkaectivity

patterrs for both types of brain netwosk

3. Experimental Results



3.1ldentification of ROl benchmarks

We adoptedhree datasetgsee sectior2.l) to demonstratehe effectiveness of the proposed visual analytics
methodand the functionality ofits accompaniedsoftware toolkit. The first oneis a working memory dataset
consisting of T1DTI and fMRI datawhich was used for experiments from sect®oato section3.4; the second
one is amultimodaldatasetonsisting of data frorachizophrenia (SZ)atientsand theirsocicdemographically
matched normal controls, which was used in se@i@nhand the third onanmild cognitive impairment (MCI)

dataset of DTI and resting state fMRI-{RRI) data, which was used for experiments in sec8idh

ROI benchmarks used in the following sections are identi#satkepicted in Fig5. Taking the working memory
datasetfor an example,we used FSL FEAT Smith et al.,, 2004 to generatethe group activation map
corresponding to (OSPANaseline) contrast. Then, grolgvel activation peaks werdentified These activation

peaks were afterwardsffinelyr egi st ered to each indivi deachindividualbj ect
activaton map. Then, with the registered group activation peaks as guidelines, two experts semexdelyto

manually identify the individual activation peaf® each subjecbased on domain knowledg€he identified
individual activation peaks with consessitom two expertsvere considered as ROl benchmaikspaticular,

the activation peaks that exist in grewjse map, but do not exist in the individual map, weoe used as ROI
benchmarksFor the default mode network (DMN)e used group ICAGalhoun et al., 2001) tget the group

ICA map for DMN, and acquired ROl benchmafks DMN in a similar way. Tablel summarized the ROIs we

used as benchmarks in the following sections.



Fig.5. lllustration ofthemanual selection of working memory RGts an individual with the guidance of group
activation map. (a) Grougise activation map. The ROI considered is shown in blue and highlighted by yellow
arrow. (b) Individual activation mafIhe registered ROI peak from group activation map is shownuim dnd
highlighted by yellow arrow. (c) The manually chosen ROI peak for this individual. The ROI peak is the cross

and the center of the highlighted purple circle.

Table 1. Functional ROIs benchmarks for experimeitsY and Z are ROI coordinates MNI_152 template

space.



Network | X Y z Atlas Label X Y Z Atlas Label
Working | -44 4 26 Precentral Gyrus 42 -44 46  Supramarginal Gyrus
Memory _
-24 6 58  Superior Frontal Gyrus 8 -76 48 Precuneous Cortex
-40 34 32 Middle Frontal Gyrus 24 4 58 Superior Frontal Gyrus
6 16 42 Paracingulate Gyrus -34 20 -6 Insular Cortex
42 -46 42 Supramarginal Gyrus -12 -96 -6 Occipital Pole
8 18 42 Paracingulate Gyrus 34 22 -4 Insular Cortex
-8 -74 46 Precuneous Cortex 36 48 12 Frontal Pole
Default | -46 -62 36 Angular Gyrus 6 -55 11 Posterior Cingulate
Mode _ o
42 -65 26 Middle Temporal Gyrus -9 -51 84 Posterior Cingulate
Network
52 -20 -12 Superior Temporal Gyru: -58 -14 -16 Middle Temporal Gyrus
-14 30 48  Superior Frontal Gyrus 9 45 38 Medial Frontal Gyrus

3.2 Exploring functional brain network for individuals

Identification of accurate and reliable individualized functional ROIs is fundanterehin connectivity analysis
and to computational modeling of dynamics and interactions among brain networks. In this section, we explore an
individual 6s working memory ROIls wusing prior knowl e

specifically, we used group data frothe OSPAN task, reported in standard MNI (Montreal Neurological



Institute) space, to guide exploration of the working memory network for separate individuals. We expected to

accurately localize the individualized working memory ROlIs for the subject.

Specfically, we affinely registered the group OSPAN ROlIs to individual space using FSL FJ&ikinsorand

Smith, 2001) As can be seen froffig. 6a), affine registration provided an initialization of the locations of the
ROls for the individual. However, due to the anatomical variability across indivichffite registration cannot
achieve the desired localization accuracy. Therefore, this initialization is followed by an interactive step in which
the ROls are edited gbhat the intranetwork connectivity strenlgtis maximized or optimizedrig. 6 depicts the
comparison of the functional connectivity networks before (panel a) and after (panel b) the interactive ROI
editing. The yellow arrows in both panels highlight R@Mose functional connectivity strengths with other ROIs
were significantly enhanced after editing. The lower leftwirdows in both panels compare the BOLD signals

for ROIs highlighted in red squares (they correspond to the left two ROIs highlighte@llbw yarrows)

(correlation before: 0.65, after: 0.89). As can be seen fa@n 6, the intranetwork connectivity has been

strengthened, and the BOLD signals of ROIs show more similar patterns after manipulation by the user.

Fig.6. Comparison of theuinctional connectivity network before (a) and after (b) ROI interaction. The yellow
arrows depict the ROIs that have improved connectivity after interaction. The BOLD signals in the lower left sub
windows displayed BOLD signals of ROIs in red squaliess noticeable that the movement of the ROIs from

initialization is trivial.



A comparison study between the interactivetlited network and the benchmark data revealed that ROI location
changes wergrivial (average 2.4nm ) compared with that betweeagistration and benchmark (average 6.7
mm), consideringhatthere is approximately &hm distance from the center of gray matter layer to the cortical
surface. This alludes to the accurate ROI localization ability of this toolkit for individu@dstionally, the intra
network connectivity strength after ROl editing is even stronger than the benchmark (connectivity strength using
the toolkit 0.73+0.09; benchmark: 0.71+0.13). This suggests that the intuitive network visualization and handy

ROI editing funtionalities provided by the toolkit are beneficial to functional network exploration.

3.3 Exploring effective brain networks for individuals

In this section, we illustrate the interaction in
scenario is similar to that in section 3.1. That is, in the interactive process of editing the effective network, if the
userhasthe prior knowledge that one ROI (e.g., right DLPFC, highlighted in the left red square #) Fas

strong causality to or &im some other ROls (e.qg., right inferior parietal lobule in the middle red square; and right
lateral occipital gyrus in the right red square), he/she may edit thdoR@le purpose of enhancing the level of
Granger causalities among these RNste the causality level is intuitively reflected by the width and the

opacity of the arrow.




Fig.7. Interaction of effective connectivity network. (a) befangeraction; (b) after interaction; (c) functional
connectivity network corresponding to (a); (d) functional connectivity network corresponding to (b). ROIs
highlighted in red squares from left to right are right DLPFC, right inferior parietal lobulerigimdlateral

occipital gyrus respectively. They correspond to the ROIs highlighted in yellow arrows.

To do so, we draggeainddropped the right DLPFC ROI in a slightly superior direction (movementmang,
resulting in increased causglistrength, aslepicted inFig.7 (b). Meanwhile, the functional connectivity was
relatively retained, as can be seen from the functional network comparison betweer(Higférg)) and after
(Fig.7 (d)) network interaction. These results indicate the practical value of our toolkit in the exploration of
effective brain networkdt is important to point out thahe software toolkienables the users freely edit the

ROIs, e.g. the user can dragnaROIl to anywhere on the corteXhough we empower the users with great
flexibility, the software toolkitdoes provide multiple constragto prohibit the user from choosing wrong ROIs.
These constrains includé) anatomical information from the volume imaayed cortical surface; 2) atlas labeling
information for the ROI being identified; 3) network constraints; 4) ROI structural connectivity pattern as
revealed by its fiber bundle shapes. 5) Reference from the template lbrainvord, this software toolkis
designed fompeoplethat are able and willing to leverage multimod#dbrmation by visual analytic define

ROlsfor individuals



3.4 Predicting missing ROIs for individuals

In taskbased fMRI, it is common that grodgased activation maps shalifferent paterns from individuals (Li et
al., 2010a) For instancel5% of theindividual subjects in datasetHave fewer activated regions than the group
result. In this section, we us#te working memory dataseEéraco et al., 20)Xo demonstratehe capability of
predicting possible missing ROIs from group activation maps in individuals via visual an@ygssingsome
ROI, e.g., left occipital pole, were not detecfed an individual subject inthe OSPAN fMRI experiment we
initialized its Iacation via ISL FLIRT to registegroupwi se ROl s t o the subjectbs
vi sual analytics toolkit to identify the assumed

fiber connection pattern with those of correading ROIs in other template subjects.

S|

mi

The prediction of ROI using its fiber tracts is premised on that a functional region/ROI has a unigue set of inputs

and outputs which largely determines its function, as reportdebbgingham and colleagu€agsingham el.,

2002). While Passingham and coligae® wo r k w anmcatue lsran@assingham et al., 2002ur own

works on human braimlso indicated that a functional region tends to have similar structural connection pattern as

revealed bythe shape of fiber tracts (Li et al., 2010a, Zhu et al., 2011, Zhang et alb)20térefore, the close
relationship betweeROI function andits connectivity pattern as revealed by the shape of fiber tiegpiresus

to predict a functional ROI usiritp fiber tracts.

As an example depicted IRig.8, the predictedleft occipital pole (highlighted by yellow arrow iRig.8&) has
significantly improvediber bundle consistency with the grougiq.8a), and the prediction erraneasuredy the
Euclidean distance betwetre predicted ROl and ROl benchmakkas 4.08 mm, which is much smaller than the
prediction error by using FSL FLIRT registration (11.88n). The same procedure was conducted on ten
randomly selected subjects, atied resuls are detailed inFig.9. It is evident that the prediction error by using
visual analytics (3.52+1.7ihm) is significantly smaller than that of FSL FLIRT registration (10.27+278#8).

Interestingly, as th&ber shape matching improved, its functional connaististrength with other ROIs improves



as well, as shown in the last columnFad.8c. This result suggests that our visual analytics toolkit is effective in

predicting missing ROIs in individual brains.

Fig.8. Prediction of missing ROI by visual anabgi (a): left occipital pole ROIs (highlighted in red) from 10
subjects witHiber tracts overlaid. (b) and (c) compare the prediction results by FSL FLIRT registration (b) and by

our visual analytics (c). The ROIs are highlighted by yellow arrows. In gaa#l, the first image and third image



show the ROI location from different views. The second image shows the correspbbdirtgacts, and the

fourth image shows the functional connectivity network.

Comparison of Prediction on Left Ocipital Pole
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Fig.9. Comparison of ROI prediction by visual analytics afffihe registration on ten subjects.

It is noticeable that the registration method usedtomparison with visual analytiés Fig.9is a linear method
To evaluate the performance of visual analytics agaiustlinear registration methods, weerformed a
registration error study using tkerking memoryROI benchmark$rom dataset hs ground truthTo do so, we
first mapped the benchmarks from fMRI spao T1 space using FLIRT, and then we registered the T1 structural
images to the MIN152 template via four registration methdiost is ANTS (Avants et al., 2008)FLIRT
(Jenkinson and Smith, 20Q1FNIRT (Andersson et al., 2008and HAMMER (Shen andDavatzikos, 2002
Thereafter,we calculated the distaredetween registered benchmarks and group activation peaks for each

method, and summarizédese distances in Fid).



Fig.10. Comparison opredictionerror usingfMRI-derivedactivation peaks asenchmarksThere are 14 ROIls

(see Table 1 in sectidy). For each ROI, the distance is averaged on eight subjects.

As can be seen froffeig.10, the four registration methods have similar performance in terms of registration error
using fMRI-derived activation peaks as benchmarks, and none of them has completely superior performance to
the otherdor all ROIs Interestingly, the four methods tend to have consistent performance for working memory
network. For instance, the four methods heassistatly the best performances fane keft andright insular, and

have consistentlyheworst performances fdhe right frontal pole. These consistémperformances from multiple
registration algorithmsmay indicatethe functional variability across individuals, rather than registration
algorithms, play a major role in registration performarnidee averageprediction errors on eight subjects for
ANTS, FLIRT, FNIRT, and HAMMER ar8&.19mm, 8.17mm, 8.35mm, and 8.18nmrespectivelyThe average
prediction error forvisual analytics is 6.0Tmm. Considering that the RQ@lentersfrom visual analyticsare
definedon the GM/WM cortical surfacewhich isabout 2mm away from thegray matter centequr proposed
method has superior performance thamage registration algorithms in predicting function@Dls, indicating

visualanalyticsis a promisingalternativemethod for accurate localization of functional ROIs.












